Лекция 15. Последовательное обучение – Нейронный машинный перевод
Обучение последовательность-последовательность – это термин, используемый для задач, которые требуют отображения последовательности произвольной длины в другую последовательность произвольной длины. Это одна из самых сложных задач, которая включает в себя изучение сопоставлений «многие ко многим». Примеры этой задачи включают Neural Machine Translation (NMT) и создание чат-ботов. NMT - это место, где мы переводим предложение с одного языка (исходный язык) на другой (целевой язык). Google Translate является примером системы NMT. Чат-боты (то есть программное обеспечение, которое может общаться с человеком или отвечать на него) способны общаться с людьми в реалистичной манере. Это особенно полезно для различных поставщиков услуг, поскольку чат-роботы могут использоваться для поиска ответов на легко решаемые вопросы, которые могут возникнуть у клиентов, вместо того, чтобы перенаправлять их операторам-людям. В этой главе мы узнаем, как реализовать систему NMT. Однако, прежде чем перейти непосредственно к таким недавним достижениям, мы сначала кратко рассмотрим некоторые из методов статистического машинного перевода (SMT), которые предшествовали NMT и были современными системами, пока NMT их не догнал. Далее мы пройдемся по шагам, необходимым для создания NMT. Наконец, мы узнаем, как шаг за шагом реализовать настоящую систему NMT, которая переводит с немецкого на английский.
Машинный перевод 
Люди часто общаются друг с другом с помощью языка по сравнению с другими методами общения (например, жестами). В настоящее время во всем мире говорят на более чем 5000 языках. Кроме того, изучение языка до уровня, на котором это легко понять носителю этого языка, является сложной задачей для освоения. Тем не менее, общение необходимо для обмена знаниями, общения и расширения вашей сети. Поэтому язык выступает в качестве барьера для общения с разными частями мира. Вот тут и приходит машинный перевод (MT). Системы MT позволяют пользователю вводить предложение на своем собственном языке (известном как исходный язык) и выводить предложение на желаемом целевом языке. Проблема с МТ может быть сформулирована следующим образом. Скажем, нам дано предложение (или последовательность слов), принадлежащее исходному языку S, определяемое следующим образом:
    	Ws = {w1 w2 w3 ,,,, wL}
Здесь Ws ∈ S. Исходный язык будет переведен в предложение W T, где T является целевым языком и задается следующим образом:
     	WM = {w′1 w′2 w′3 ,,,, w′T } 
Здесь WT ∈ T. WT получается через систему MT, которая выводит следующее:
 () | * T s T Tp W W W W ∀ ∈
Здесь * T W - пул возможных кандидатов на перевод, найденных алгоритмом для исходного предложения. Кроме того, лучший кандидат из пула кандидатов определяется следующим уравнением: 
T T лучший T T S W WW a rgmax p W W ∗ ∈ = θ
Здесь θ - параметры модели. Во время обучения мы оптимизируем модель, чтобы максимизировать вероятность некоторых известных целевых переводов для набора соответствующих исходных переводов (то есть обучающих данных). До сих пор мы обсуждали формальную постановку проблемы языкового перевода, решение которой нам интересно. Далее мы пройдемся по истории MT, чтобы понять, как люди пытались решить эту проблему в первые дни.
Краткая историческая экскурсия по машинному переводу 
Здесь мы обсудим историю МТ. В создании MT участвуют системы, основанные на правилах. Затем появились более статистически надежные системы МП. Статистический машинный перевод (SMT) использовал различные показатели статистики языка для создания переводов на другой язык. Затем наступила эра НМТ. В настоящее время NMT обладает самым современным уровнем производительности в большинстве задач машинного обучения по сравнению с другими методами. Основанный на правилах перевод NMT появился намного позже статистического машинного обучения, и статистическое машинное обучение существует уже более полувека. Создание SMT-методов началось в 1950-60 годах, когда во время одного из первых зарегистрированных проектов, эксперимента GeorgetownIBM, более 60 русских предложений были переведены на английский язык. Одним из начальных методов МТ был машинный перевод на основе слов. Эта система выполняла переводы в слова с использованием двуязычных словарей. Однако, как вы можете себе представить, этот метод имеет серьезные ограничения. Очевидным ограничением является то, что перевод между словами не является взаимно-однозначным отображением между разными языками. Кроме того, дословный перевод может привести к неверным результатам, поскольку он не учитывает контекст данного слова. Перевод данного слова на исходном языке может меняться в зависимости от контекста, в котором оно используется. Чтобы понять это на конкретном примере, давайте рассмотрим пример перевода с английского на французский на рисунке 10.1. Вы можете видеть, что в данных двух английских предложениях изменяется одно слово. Однако это создает радикальные изменения в переводе:
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Рисунок 10.1. Переводы (с английского на французский) между языками не являются взаимно однозначными сопоставлениями слов. (Она любит кошек. Она любит его)
В 1960-х годах Консультативный комитет по автоматической обработке языков (ALPAC) выпустил доклад «Языки и машины: компьютеры в переводе и лингвистике», Национальная академия наук (1966), о перспективах МТ. Был сделан следующий вывод:
Нет немедленной или предсказуемой перспективы полезного машинного перевода.
Это было потому, что MT был медленнее, менее точным и более дорогим, чем человеческий перевод в то время 
Это нанесло огромный удар по достижениям MT, и почти десятилетие прошло в тишине. Затем последовало основанное на корпорациях MT, где алгоритм обучался с использованием кортежей исходного предложения, и соответствующее целевое предложение было получено через параллельный корпус, то есть параллельный корпус будет иметь формат, ([(<source_sentence_1>, <target_sentence_1 >), (<source_sentence_2>, <target_sentence_2>),…]). Параллельный корпус - это большой текстовый корпус, сформированный в виде кортежей, состоящий из текста с исходного языка и соответствующего перевода этого текста. Иллюстрация этого показана в таблице 10.2. Следует отметить, что построение параллельного корпуса гораздо проще, чем создание двуязычных словарей, и более точный, поскольку данные для обучения богаче, чем данные для дословного обучения. Кроме того, вместо того, чтобы напрямую полагаться на двуязычные словари, созданные вручную, двуязычный словарь (то есть модели переходов) двух языков может быть построен с использованием параллельного корпуса. Модель перехода показывает, насколько вероятно, что целевое слово / фраза будет правильным переводом, учитывая текущее исходное слово / фразу. В дополнение к изучению модели перехода, корпорация MT также изучает модели выравнивания слов. Модель выравнивания слов может представлять, как слова в фразе из исходного языка соответствуют переводу этой фразы. Пример параллельных корпусов и модели выравнивания слов изображен на рисунке 10.2. Иллюстрация примера параллельных корпусов показана в таблице 10.2:
	Source language sentences (English)
	Target language sentences (French)

	I went home
	Je suis allé à la maison

	John likes to play guitar
	John aime jouer de la guitare

	He is from England
	Il est d'Angleterre

	…
	….
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Рисунок 10.2: Выравнивание слов между двумя разными языками
Другим популярным подходом был межъязыковой машинный перевод, который включал перевод исходного предложения в язык-нейтральный интерлингва (то есть метаязык), а затем генерирование переведенного предложения из интерлингва. Более конкретно, система многоязычного машинного перевода состоит из двух важных компонентов: анализатора и синтезатора. Анализатор примет исходное предложение и определит агентов (например, существительные), действия (например, глагол) и т. д. А также то, как они взаимодействуют друг с другом. Далее, эти идентифицированные элементы представлены с помощью межъязыкового лексикона. Пример межъязыкового лексикона может быть сделан с помощью наборов (то есть группы синонимов, имеющих общее значение), доступных в WordNet. Затем из этого многоязычного представления синтезатор создаст перевод. Поскольку синтезатор знает существительные, глаголы и т. д. через межъязыковое представление, он может генерировать перевод на целевом языке путем включения правил грамматики для конкретного языка. 
Статистический машинный перевод (SMT) 
Затем начали появляться более статистически обоснованные системы. Одной из новаторских моделей этой эпохи были IBM Models 1-5, которые делали перевод на основе слов. Однако, как мы обсуждали ранее, перевод слов не является непосредственным переводом с исходного языка на целевой (например, составные слова и морфология). В конце концов, исследователи начали экспериментировать с системами перевода на основе фраз, которые добились заметных успехов в машинном переводе. Перевод на основе фраз работает подобно переводу на основе слов, за исключением того, что он использует фразы языка в качестве атомных единиц перевода вместо отдельных слов. Это более разумный подход, поскольку он упрощает моделирование отношений «один к одному», «многие к одному» или «многие ко многим» между словами. Основной целью перевода на основе фраз является изучение модели перевода фраз, которая содержит распределение вероятностей различных целевых фраз-кандидатов для данной исходной фразы. Как вы можете себе представить, этот метод включает в себя ведение огромных баз данных различных фраз на двух языках. Этап переупорядочения фраз также выполняется, поскольку отсутствует монотонное упорядочение слов между предложениями одного языка и одним в другом. Пример этого показан на рисунке 10.2. Если слова монотонно упорядочены между языками, не должно быть перекрестков между отображениями слов.
Одним из ограничений этого подхода является то, что процесс декодирования (поиск лучшей целевой фразы для данной исходной фразы) является дорогостоящим. Это связано с размером базы данных фраз, а также с исходной фразой, которая часто содержит несколько фраз на целевом языке. Чтобы облегчить бремя, возникли основанные на синтаксисе переводы. В синтаксическом переводе исходное предложение представляется синтаксическим деревом. На рисунке 10.3 NP представляет собой именную фразу, VP - глагольную фразу, а S - предложение. Затем происходит фаза переупорядочения, когда узлы дерева переупорядочиваются для изменения порядка субъекта, глагола и объекта в зависимости от целевого языка. Это связано с тем, что структура предложения может меняться в зависимости от языка (например, в английском языке это субъект-глагол-объект, тогда как в японском это субъект-глагол-объект). Переупорядочение решено согласно чему-то известному как r-таблица. R-таблица содержит вероятностные изменения узлов дерева в каком-либо другом порядке:
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Рисунок 10.3. Синтаксическое дерево для предложения 
Затем происходит фаза вставки. На этапе вставки мы случайно вставляем слово в каждый узел дерева. Это связано с предположением, что существует невидимое слово NULL, и оно генерирует целевые слова в случайных позициях дерева. Кроме того, вероятность вставки слова определяется тем, что называется n-таблицей, то есть таблицей, содержащей вероятности вставки определенного слова в дерево. Затем наступает фаза перевода, где каждый конечный узел переводится в целевое слово пословным образом. Наконец, переведенное предложение считывается из синтаксического дерева для построения целевого предложения.
Нейронный машинный перевод (NMT) 
Наконец, примерно в 2014 году были введены системы NMT. NMT является конечной системой, которая принимает полное предложение в качестве входных данных, выполняет определенные преобразования, а затем выводит переведенное предложение для соответствующего исходного предложения. Таким образом, NMT устраняет необходимость в разработке функций, необходимых для машинного перевода, таких как построение моделей перевода фраз и построение синтаксических деревьев, что является большой победой для сообщества NLP. Кроме того, NMT превзошел все другие популярные методы MT за очень короткий период, всего два-три года. На рисунке 10.4 мы изображаем результаты различных систем MT, описанных в литературе по MT. Например, результаты 2016 года получены от Сеннриха и других в их статье «Эдинбургские системы нейронного машинного перевода для WMT 16», «Ассоциация по компьютерной лингвистике», Материалы первой конференции по машинному переводу, август 2016: 371–376, и от Уильямса и другие в своей статье, «Системы статистического машинного перевода Эдинбурга для WMT16», Ассоциация компьютерной лингвистики, Материалы первой конференции по машинному переводу, август 2016: 399-410. Все системы MT оцениваются по баллу BLEU. Как мы обсуждали в Главе 9, Приложения LSTM - Генерация подписи изображения, показатель BLEU обозначает количество n-грамм (например, униграмм и биграмм) перевода кандидата, который соответствовал в эталонном переводе. Таким образом, чем выше показатель BLEU, тем лучше система MT. Мы обсудим метрику BLEU подробно позже в этой главе. Нет необходимости подчеркивать, что NMT является явным победителем:
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Рисунок 10.4. Сравнение статистической системы машинного перевода с системами NMT. Предоставлено Rico Sennrich.
Ситуационное исследование, оценивающее потенциал систем NMT, доступно в разделе «Готов ли Neural Machine Translation к развертыванию?». Тематическое исследование по 30 направлениям перевода, JunczysDowmunt, Hoang и Dwojak, Материалы девятого международного семинара по переводу на разговорный язык, Сиэтл (2016). В исследовании рассматривается эффективность различных систем по нескольким задачам перевода между различными языками (английский, арабский, французский, русский и китайский). Результаты также подтверждают, что системы NMT (NMT 1.2M и NMT 2.4M) работают лучше, чем системы SMT (PB-SMT и Hiero). На рисунке 10.5 показано несколько статистических данных для набора из современного машинного переводчика 2017 года. Это из презентации «Состояние машинного перевода», Intento, Inc, 2017, подготовленной Константином Савенковым, соучредителем и генеральным директором Intento. Мы видим, что производительность MT, созданного DeepL (https://www.deepl.com), похоже, тесно конкурирует с другими гигантами MT, включая Google. Сравнение включает системы MT, такие как DeepL (NMT), Google (NMT), Яндекс (гибрид NMT-SMT), Microsoft (имеет SMT и NMT), IBM (SMT), Prompt (на основе правил) и SYSTRAN (правило), гибрид на основе SMT). График ясно показывает, что системы NMT лидируют в текущих достижениях MT. Оценка LEPOR используется для оценки различных систем. LEPOR - более продвинутый показатель, чем BLEU, и он пытается решить проблему смещения языка. Проблема смещения языка относится к явлению, когда некоторые метрики оценки (например, BLEU) работают хорошо для определенных языков, но плохо работают для некоторых других. Тем не менее, следует также отметить, что результаты содержат некоторое смещение из-за механизма усреднения, используемого в этом сравнении. Например, Google Translator был усреднен по большому набору языков (включая сложные задачи перевода), тогда как DeepL был усреднен по меньшему и относительно более простому подмножеству языков. Поэтому мы не должны делать вывод, что система DeepL MT лучше, чем система Google MT. Тем не менее, общие результаты дают общее сравнение производительности современных систем NMT и SMT:
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Рисунок 10.5: Производительность различных систем МП. Предоставлено Intento, Inc. 
Мы увидели, что NMT уже превзошел SMT-системы за несколько лет, и это современное состояние. Теперь перейдем к обсуждению деталей и архитектуры системы NMT. Наконец, мы будем внедрять систему NMT с нуля.
Понимание нейронного машинного перевода 
Теперь, когда мы понимаем, как со временем развивался машинный перевод, давайте попробуем понять, как работает современный NMT. Сначала мы рассмотрим архитектуру модели, используемую нейронными машинными переводчиками, а затем перейдем к пониманию фактического алгоритма обучения. 
Интуиция за NMT 
Во-первых, давайте разберемся с интуицией, лежащей в основе системы NMT. Скажем, вы свободно говорите по-английски и по-немецки, и вас попросили перевести следующее предложение на английский язык: 
Ich ging nach Hause 
Это предложение переводится как следующее: 
Я пошел домой, 
хотя человеку c беглым разговорным языком могло потребоваться не более нескольких секунд, чтобы перевести это - есть определенный процесс, связанный с переводом. Сначала вы читаете предложение на немецком языке, а затем создаете мысль или концепцию о том, что это предложение представляет или подразумевает. И, наконец, вы переводите предложение на английский. Эта же идея используется для построения систем NMT (см. Рисунок 10.6). Кодировщик считывает исходное предложение (то есть аналогично тому, как вы читаете немецкое предложение). Затем кодировщик выводит вектор контекста (вектор контекста соответствует мысли / концепции, которую вы представили после прочтения предложения). Наконец, декодер принимает контекстные векторы и выводит перевод на английский:
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Рисунок 10.6. Концептуальная архитектура системы NMT
Архитектура NMT 
Теперь рассмотрим архитектуру более подробно. Подход «последовательность к последовательности», обсуждаемый здесь, был предложен Sutskever, Vinyals и Le в их работе «Последовательность к обучению с использованием нейронных сетей», Труды 27-й Международной конференции по системам обработки нейронной информации - Том 2: 3104-3112. Из диаграммы на рисунке 10.6 видно, что в архитектуре NMT есть два основных компонента. Они называются кодером и декодером. Другими словами, NMT можно рассматривать как архитектуру кодера-декодера. Кодер преобразует предложение из заданного исходного языка в мысль, а декодер декодирует или переводит мысль на целевой язык. Как вы можете видеть, это имеет некоторые общие черты с методом многоязычного машинного перевода, о котором мы кратко говорили. Это показано на рисунке 10.7. Левая часть вектора контекста обозначает кодировщик (который принимает исходное предложение слово за словом для обучения модели временных рядов). Правая часть обозначает декодер, который выводит слово за словом (при использовании предыдущего слова в качестве текущего ввода) соответствующий перевод исходного предложения. Мы также будем использовать встраиваемые слои (как для исходного, так и для целевого языков), чтобы предоставлять векторы слов в качестве входных данных для моделей:
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Рисунок 10.7: Развертывание исходных и целевых предложений с течением времени 
Имея базовое понимание того, как выглядит NMT, давайте формально определим цель NMT. Конечная цель системы NMT - максимизировать логарифмическую вероятность, учитывая исходное предложение xs и соответствующий ему yT, то есть максимизировать следующее:
()
1 1 | N T s i logP y x N = ∑ 
Здесь N относится к числу исходных и целевых наборов предложений, которые мы имеем в качестве обучающих данных.
Затем, во время вывода, для данного исходного предложения, выводим sx, мы найдем лучший перевод Ty, используя следующее:
() () T M выведите y Y i 1 | argmax | xTbest выводят, что T y Y T s T s y argmax P y x P y ∈ ∈ = = = ∏
Здесь T Y - множество возможных предложений-кандидатов. Прежде чем мы рассмотрим каждую часть архитектуры NMT, давайте определим математические обозначения, чтобы понять систему более конкретно. Давайте определим кодировщик LSTM как enc LSTM и декодер LSTM как dec LSTM. На шаге t времени определим состояние ячейки LSTM как ct, а внешнее скрытое состояние - как ht. Следовательно, подача входного xt в LSTM приводит к ct и ht: 
() 1 2 1, | , t t t tc h LSTM x x x x− =…
Теперь поговорим о слое внедрения, кодере, векторе контекста и, наконец, о декодере. Уровень внедрения В главах 8 «Приложения LSTM - генерация текста» и в главе 9 «Приложения LSTM - генерация заголовков изображений» мы подробно обсудили преимущества использования встраивания слов вместо представления слов в горячем кодированном виде, особенно когда словарный запас большой. Здесь также мы используем слой вложения из двух слов, sEm b, для исходного языка и T Emb для целевого языка. Таким образом, вместо подачи xt прямо в LSTM, мы будем получать () tEm b x. Однако, чтобы избежать ненужного увеличения записи, мы будем предполагать () t t x Emb x =. Кодер. Как упоминалось ранее, кодер отвечает за генерацию вектора мысли или вектора контекста, который представляет то, что подразумевается под исходным языком. Для этого мы будем использовать сеть LSTM (см. Рисунок 10.8):
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Рисунок 10.8: Ячейка LSTM Кодер инициализируется с c0 и h0 как нулевые векторы. 
Кодировщик принимает последовательность слов {} 1 2,,, Ls ss sx xxx =…, в качестве входных данных и вычисляет вектор контекста, {}, c hv vv =, где vc - это конечное состояние ячейки, а vh - это окончательное внешнее скрытое состояние, полученное после обработки последнего элемента L Tx последовательности xT. Мы представляем это следующим образом: 
() 1 2 1, | , L, L L L L s s s s sc h LSTM x x x x - =…
c L v c =
h L v h =
Контекстный вектор 
Идея контекстного вектора (v) состоит в том, чтобы представить предложение исходного языка в сжатой форме. Кроме того, в отличие от того, как инициализируются состояния кодера (то есть они инициализируются нулями), вектор контекста становится начальным состоянием для декодера LSTM. Другими словами, декодер LSTM запускается не с начального состояния нулей, а с контекстным вектором в качестве исходного состояния. Мы поговорим об этом более подробно далее.
Декодер 
Декодер отвечает за декодирование вектора контекста в желаемый перевод. Наш декодер также является сетью LSTM. Хотя кодер и декодер могут совместно использовать один и тот же набор весов, обычно лучше использовать две разные сети для кодера и декодера. Это увеличивает количество параметров в нашей модели, что позволяет нам более эффективно изучать переводы. Сначала состояния декодера инициализируются контекстным вектором {}, c hv v v =, как показано здесь:
0 c c v =
0 ч ч v =
Здесь 0 0, dec c h LSTM ∈. Это (v) является критически важным звеном, соединяющим кодер с декодером для формирования сквозной вычислительной цепочки (см. На рисунке 10.6 единственное, что совместно используется кодером и декодером - это v). Кроме того, это единственная часть информации, которая доступна декодеру об исходном предложении. Затем мы вычислим m-й прогноз переведенного предложения следующим образом: 
() 1 1 2 2, | ,,, мм мм м дек T T T Tc h LSTM y v y y y - - =…
() soft maxmT softmax m softmaxy w h b = × +
Полная система NMT с деталями того, как ячейка LSTM в кодере подключается к ячейке LSTM в декодере и как уровень softmax используется для вывода прогнозов, показана на рисунке 10.9:
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Рисунок 10.9: Архитектура кодера-декодера с LSTM 
Подготовка данных для системы NMT 
В этом разделе мы поговорим о точном процессе подготовки данных для обучения и прогнозирования из системы NMT. Во-первых, мы поговорим о том, как подготовить обучающие данные (то есть пары исходного и целевого предложений) для обучения системы NMT с последующим вводом данного исходного предложения для создания перевода исходного предложения. 
Время обучения 
Данные обучения состоят из пар исходных предложений и соответствующих переводов на целевой язык. Пример может выглядеть следующим образом: 
• (Ich ging nach Hause, я пошел домой) 
• (Sie hat in der Schule gewartet, она ждала в школе) 
У нас есть N таких пар в нашем наборе данных. Если мы хотим реализовать довольно хороший переводчик, N должен быть в масштабе миллионов. Увеличение данных обучения как таковых также подразумевает увеличение времени обучения.
Далее мы введем два специальных токена: <s> и </ s>. Маркер <s> представляет начало предложения, тогда как </ s> представляет конец предложения. Теперь данные будут выглядеть так: 
• (<s> Ich ging nach Hause<.s/><s> я пойду домой </ s>, <s> я пошел домой </ s>) 
• (<s> Sie hat in der Schule gewartet </ s>, <s> Она ждала в школе </ s>) 
После этого мы будем дополнять предложения токенами </ s> так, чтобы исходные предложения имели фиксированную длину L, а целевые предложения - фиксированную длину M. Следует отметить, что L и M не должны быть равными. Результатом этого шага является следующее: 
• (<s> я знаю, что такое </ s> </ s> </ s>, <s> я пошел домой </ s> </ s> </ s>) 
• ( <s> Sie hat in der Schule gewartet </ s>, <s> Она ждала в школе </ s>) 
Если предложение имеет длину больше, чем L или M, оно усекается, чтобы соответствовать длине. Затем предложения проходят через токенизатор, чтобы вывести токенизированные слова. Здесь я игнорирую второй кортеж (то есть пару предложений), так как оба обрабатываются одинаково: 
(['<s>', 'Ich', 'ging', 'nach', 'Hause', '< / s> ',' </ s> ',' </ s> '], [' <s> ',' I ',' пошел ',' дом ',' </ s> ',' </ s > ',' </ s> ']) 
Следует отметить, что приведение предложений к фиксированной длине несущественно, поскольку LSTM способны обрабатывать динамические размеры последовательностей. Однако приведение их к фиксированной длине помогает нам обрабатывать предложения как партии, а не обрабатывать их по одному. 
Изменение исходного предложения 
Далее мы выполним специальный трюк с исходными предложениями. Скажем, у нас есть предложение ABC на исходном языке, которое мы хотим перевести на αβγφ на целевом языке. Сначала мы изменим исходные предложения, чтобы предложение ABC читалось как CBA. Это означает, что для перевода ABC в αβγφ нам нужно перестроить в CBA. Это значительно повышает производительность нашей модели, особенно когда исходный и целевой языки имеют одинаковую структуру предложений (например, субъект-глагол-объект). Давайте попробуем понять, почему это помогает. Главным образом, это помогает построить хорошую связь между кодером и декодером. Давайте начнем с предыдущего примера. Мы объединяем исходное и целевое предложение: ABCαβγφ
Если вы вычислите расстояние (то есть количество слов, разделяющих два слова) от A до α или от B до β, они будут одинаковыми. Однако учтите это, когда вы перевернете исходное предложение, как показано здесь: CBAαβγφ
Здесь A очень близко к α и так далее. Кроме того, для создания хороших переводов важно создавать хорошие коммуникации с самого начала. Это может помочь системам NMT улучшить свою производительность с помощью этого простого трюка. Теперь наш набор данных становится таким: 
(['</ s>', '</ s>', '</ s>', 'Hause', 'nach', 'ging', 'Ich', '<s> '], 
[' <s> ',' I ',' пошел ',' домой ',' </ s> ',' </ s> ',' </ s> ']) 
Далее, используя изученные вложения , s Emb и T Emb, мы заменяем каждое слово соответствующим вектором вложения. Другая хорошая новость заключается в том, что наше исходное предложение заканчивается токеном <s>, а целевое предложение начинается с токена <s>, поэтому во время обучения нам не нужно выполнять никакой специальной обработки для создания связи между окончанием исходное предложение и начало целевого предложения.
Обратите внимание, что шаг обращения исходного предложения является субъективным этапом предварительной обработки. Это не может быть необходимо для некоторых переводческих задач. Например, если ваша задача перевода состоит в том, чтобы перевести с японского (то есть часто пишется в формате субъект-объект-глагол) на филиппинский (часто пишется глагол-субъект-объект), то изменение исходного предложения может на самом деле причинить вред, а не помочь. Это связано с тем, что, переворачивая текст на японском языке, вы увеличиваете расстояние между начальным элементом целевого предложения (т. е. глаголом (японским)) и соответствующей сущностью исходного языка (т. е. глаголом (филиппинским).).
Время тестирования 
Во время тестирования у нас есть только исходное предложение, но не целевое предложение. Кроме того, мы готовим наши исходные данные так же, как мы делали это на этапе обучения. Затем мы получаем выходные переведенные слово за словом, подавая последним предсказанное слово декодером в качестве следующего ввода. Процесс прогнозирования сначала запускается подачей токена <s> в декодер первым. Мы поговорим о точной процедуре обучения и процедуре прогнозирования для данного исходного предложения.
Обучение NMT 
Теперь, когда мы определили архитектуру NMT и предварительно обработанные данные обучения, обучить модель довольно просто. Здесь мы определим и проиллюстрируем (см. Рисунок 10.10) точный процесс, используемый для обучения: 
1. Preprocess (), ST xy, как объяснено ранее 
2. Введите xs в enc LSTM и вычислите v, обусловленное xs 
3. Инициализируйте dec LSTM с помощью v 
4. Прогноз {} 1 2ˆ ˆ ˆ ˆ,,, MT TT Ty yyy =…, соответствующий входному предложению xs из dec LSTM, где m-е предсказание из целевого словаря V вычисляется следующим образом: 
() mˆ wh bmT softmax softmaxy s oftmax = + () (), m 1 1 T ˆ ˆ ˆ w argmax P | ,, m m mw m T T Tw V y v y y −∈ =…
Здесь wTm обозначает наилучшее целевое слово для m-й позиции. 
5. Рассчитать потери: категорическая перекрестная энтропия между предсказанным словом, ˆ Ty, и фактическим словом в позиции th m, m Ty 
6. Оптимизировать уровни enc LSTM, dec LSTM и softmax по отношению к потерям.
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Рисунок 10.10: Процедура обучения для NMT
Логический вывод с использованием NMT немного отличается от процесса обучения по NMT (рисунок 10.11). Поскольку у нас нет целевого предложения во время вывода, нам нужен способ запустить декодер в конце фазы кодирования. Это сходно с упражнением в создании субтитров, которое мы выполняли в главе 9 «Применение LSTM - генерация титров в изображениях». В этом упражнении мы добавили токен <SOS> к началу заголовков, чтобы обозначить начало заголовка, и <EOS>, чтобы обозначить конец. Мы можем просто сделать это, передавая <s> в качестве первого входа для декодера, затем получив прогноз в качестве выходного сигнала и введя последний прогноз в качестве следующего входа в NMT: 
1. Предварительная обработка xs, как объяснено ранее 
2. Подать xs в enc LSTM и вычислить v с условием xs 
3. Инициализировать dec LSTM с помощью v 
4. Для начального шага прогнозирования, предсказать 2 ˆT y, обусловив прогноз на 1ˆ T ys = <> и v 
5. Для последующих временных шагов , в то время как ˆ / i T ys ≠ <>, прогнозируем 1 ˆ m Ty +, обуславливая прогноз {} 1ˆ ˆ,,, мм TT yys - <>… и v
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Рисунок 10.11: Вывод из NMT
Оценка BLEU - оценка систем машинного перевода 
BLEU расшифровывается как двуязычный оценочный дублер и представляет собой способ автоматической оценки систем машинного перевода. Эта метрика была впервые введена в документе BLEU: метод автоматической оценки машинного перевода, Papineni и др., Материалы 40-го ежегодного собрания Ассоциации вычислительной лингвистики (ACL), Филадельфия, июль 2002 г .: 311-318. Мы будем реализовывать алгоритм подсчета баллов BLEU и доступны в качестве упражнения в bleu_score_example. ipynb. Давайте разберемся, как это рассчитывается. Давайте рассмотрим пример, чтобы узнать вычисления балла BLEU. Скажем, у нас есть два предложения-кандидата (то есть предложение, предсказанное нашей системой MT) и справочное предложение (то есть соответствующий фактический перевод) для некоторого данного исходного предложения: 
• Ссылка 1: Кот сидел на коврике 
• Кандидат 1 : Кошка на ковре 
Чтобы увидеть, насколько хорош перевод, мы можем использовать одну меру, точность. Точность - это мера того, сколько слов в кандидате фактически присутствует в ссылке. В общем, если вы рассматриваете проблему классификации с двумя классами (обозначаемыми как отрицательные и положительные), точность определяется по следующей формуле: 
число образцов правильно классифицировано как положительное значение / Точность всех образцов определено как положительное 
Давайте теперь вычислим точность для кандидата 
1: Точность = количество раз, которое каждое слово кандидата появилось в ссылке / число слов в кандидате. 
Математически это может быть задано следующей формулой: 
() unigram CandidateIsFoundInRef unigramPrecision Candidate ∈ = ∑ 
Точность для кандидата 1 = 5/6 Это также известно как точность в 1 грамм, так как мы рассматриваем одно слово за раз. Теперь давайте представим нового кандидата: 
Кандидат 2: The cat cat cat cat
Человеку нетрудно увидеть, что кандидат 1 намного лучше, чем кандидат 2. Давайте вычислим точность: 
Точность для кандидата 2 = 6/6 = 1 
Как мы видим, оценка точности не соответствует нашему суждению. Следовательно, нельзя полагать, что только точность является хорошей мерой качества перевода. 
Модифицированная точность 
Чтобы устранить ограничение точности, мы можем использовать модифицированную точность в 1 грамм. Измененная точность обрезает количество вхождений каждого уникального слова в кандидате по количеству раз, когда это слово появилось в ссылке: 
() () {} 1, maxunigram Кандидат MinOccurences unigram unigram p Candidate ∈ = ∑
Следовательно, для кандидатов 1 и 2 измененная точность будет следующей: 
Модификация-1-грамм-Точность Кандидат 1 = (1 + 1 + 1 + 1 + 1) / 6 = 5/6 
Мод-1-грамм-Точность Кандидат 2 = (2 + 1) / 6 = 3/6 
Мы уже видим, что это хорошая модификация, поскольку точность кандидата 2 снижается. Она может быть расширена до любой n-граммы, рассматривая n слов за раз вместо одного слова. 
Штраф за краткость 
Точность, естественно, предпочитает небольшие предложения. Это поднимает вопрос в оценке, поскольку система MT может генерировать небольшие предложения для более длинных ссылок и при этом иметь более высокую точность. Таким образом, штраф за краткость введен, чтобы избежать этого. Штраф за краткость рассчитывается следующим образом:
() 1/1 .r c, если c r
BP
e если cr -  >     =     ≤   
Здесь c - длина предложения кандидата, а r - длина ссылочного предложения. В нашем примере мы вычисляем как показано здесь: 
BP для кандидата 1 = () () 1 6/6 0 1 ee - = = 
BP для кандидата 2 = () () 1 6/6 0 1 ee - = = 
Финал Балл BLEU 
Далее, чтобы вычислить балл BLEU, мы сначала вычислим несколько различных модифицированных значений точности в n-граммах для набора различных значений 1,2,, n N =…. Затем мы вычислим средневзвешенное геометрическое с точностью до грамма:
1
N
н н
я BLEU BP exp w p =    = ×      ∑
Здесь wn - вес модифицированной точности n-грамм pn. По умолчанию равные веса используются для всех значений n-грамм. В заключение, BLEU вычисляет точность измененного n-грамма и штрафует точность измененного n-грамм с краткостью. Модифицированная точность в n-граммах позволяет избежать потенциальных значений высокой точности, которые даются бессмысленным предложениям (например, кандидат 2). 
Внедрение NMT с нуля - переводчик с немецкого на английский 
Теперь мы реализуем реальный нейронный машинный переводчик. Мы будем реализовывать NMT с использованием необработанных переменных операций TensorFlow. Упражнение доступно в ch10 / neural_machine_translation.ipynb. Однако в TensorFlow есть библиотека, известная как библиотека seq2seq. Вы можете прочитать больше информации о seq2seq, а также научиться реализовывать NMT с помощью seq2seq в Приложении «Математические основы» и «Расширенный TensorFlow». Причина, по которой мы используем raw TensorFlow, заключается в том, что, как только вы научитесь реализовывать машинный переводчик с нуля без использования вспомогательных функций, вы сможете быстро научиться использовать библиотеку seq2seq. Кроме того, он-лайн ресурсов очень мало для обучения реализации последовательных моделей с использованием необработанного TensorFlow. Тем не менее, существует множество ресурсов / учебных пособий о том, как использовать библиотеку seq2seq для машинного перевода.
TensorFlow предоставляет очень информативную последовательность последовательных обучающих программ, ориентированных на NMT, по адресу https://www.tensorflow.org/ tutorials / seq2seq.
Введение в данные 
Мы используем англо-немецкие пары предложений, доступные по адресу https://nlp.stanford.edu/ projects / nmt /. Доступно ~ 4,5 миллиона пар предложений. Однако мы будем использовать только 250 000 пар предложений из-за вычислительной осуществимости. Словарь состоит из 50000 наиболее распространенных английских слов и 50000 наиболее распространенных немецких слов и слов, которые не найдены в словаре, но будут заменены специальным маркером, <УНК>. Здесь мы перечислим примеры предложений, найденных в наборе данных:
DE: Das Großunternehmen sieht sich einfach die Produkte des kleinen Unternehmens and unterstellt so viele Patentverletzungen, wie es nur geht.
RU: Крупная корпорация рассмотрит продукцию небольшой компании и представит как можно больше заявлений о нарушении патентных прав.
DE: In or ordenlichen Sitzung am 22. Сентябрь 2008 г., посвященный стратегическим исследованиям, проводимым в Германии, с указанием должностей, связанных с положением дел, и получением новых знаний и опыта.
RU: На очередном заседании 22 сентября 2008 года Наблюдательный совет рассматривал стратегические вопросы из различных областей бизнеса, такие как позиционирование рынка наличных денег в конкуренции с внебиржевыми торговыми площадками, инновации в сегменте деривативов и различные пост ## AT ## - ## AT ## торговая деятельность. 
Предварительная обработка данных 
После загрузки данных тренировки (train.en и train.de), как указано в файле упражнения, давайте посмотрим, что находится в этих файлах. Файл train.en содержит английские предложения, тогда как train.de содержит соответствующие немецкие предложения. Далее мы выберем 250 000 пар предложений из большого корпуса, который мы имеем в качестве данных. Мы также соберем 100 предложений, выделенных из данных обучения, в качестве данных нашего теста. Наконец, словари для этих двух языков находятся в vocab.50K.en.txt и vocab.50K.de.txt.
Затем мы предварительно обработаем эти данные, как объяснено ранее в этой главе. Изменение предложений является необязательным для обучения встраиванию слова (если оно выполняется отдельно), так как изменение предложения не изменило бы контекст данного слова. Мы будем использовать следующий простой алгоритм токенизации для токенизации предложений на слова. По сути, мы вводим пробелы перед различными знаками препинания, чтобы их можно было разбить на отдельные элементы. Тогда для любого слова, которое не найдено в словаре, мы заменим его специальным <УНК> маркер. Параметр is_source указывает, обрабатываем ли мы исходные предложения (is_source = True) или целевые предложения (is_source = False):
def split_to_tokens(sent,is_source):
    '''    This function takes in a sentence (source or target)    and preprocess the sentency with various steps    (e.g. removing punctuation)    '''
    global src_unk_count, tgt_unk_count
    # Remove punctuation and new-line chars
    sent = sent.replace(',',' ,')
    sent = sent.replace('.',' .')
    sent = sent.replace('\n',' ')
    sent_toks = sent.split(' ')
    for t_i, tok in enumerate(sent_toks):
        if is_source:
            # src_dictionary contain the word ->
             # word ID mapping for source vocabulary
            if tok not in src_dictionary.keys():
                if not len(tok.strip())==0:
                    sent_toks[t_i] = '<unk>'
                    src_unk_count += 1
               else:
            # tgt_dictionary contain the word ->
             # word ID mapping for target vocabulary
            if tok not in tgt_dictionary.keys():
                if not len(tok.strip())==0:
                    sent_toks[t_i] = '<unk>'
                    # print(tok)
                    tgt_unk_count += 1
    return sent_toks

Изучение встраивания слов 
Далее мы перейдем к изучению встраивания слов. Чтобы выучить вложения слов, мы будем использовать модель Continuous Bag-of-Words (CBOW). Тем не менее, вы можете поэкспериментировать с другими методами обучения встраиванию слов, такими как GloVe. Мы не будем проходить через весь код (который найдете в файлее word2vec.py), а поделимся некоторыми из изученных встраиваний слов: вложения немецкого слова
Nearest to In: in, Aus, An, Neben, Bei, Mit, Trotz, Auf, Nearest to war: ist, hat, scheint, wäre, hatte, bin, waren, kam, Nearest to so: verbreitet, eigentlich, ausserdem, ziemlich, Rad-, zweierlei, wollten, ebenso, Nearest to Schritte: Meter, Minuten, Gehminuten, Autominuten, km, Kilometer, Fahrminuten, Steinwurf, Nearest to Sicht: Aussicht, Ausblick, Blick, Kombination, Milde, Erscheinung, Terroranschläge, Ebenen, 
Вложения английского слова
Nearest to more: cheaper, less, easier, better, further, greater, bigger, More, Nearest to States: Kingdom, Nations, accross, attrition, Efex, Republic, authoritative, Sorbonne, Nearest to Italy: Spain, Poland, France, Switzerland, Madrid, Portugal, Fuengirola, 51, Nearest to island: shores, Principality, outskirts, islands, skyline, ear, continuation, capital, Nearest to 2004: 2005, 2001, 2003, 2007, 1996, 2006, 1999, 1995,
Во время обучения системе машинного перевода можно одновременно изучать вложения. Другой альтернативой является использование предварительно обученных вложений слов. О том, как это сделать, мы поговорим позже в этой главе. 
Определение кодера и декодера 
Мы будем использовать два отдельных LSTM в качестве кодера и декодера. Сначала мы определим гиперпараметры: 
• batch_size: вы должны быть очень осторожны при установке размера пакета. Наш NMT может занять довольно много памяти при работе. 
• num_nodes: это количество скрытых единиц в LSTM. Большой гиперпараметр num_nodes приведет к лучшей производительности и высокой вычислительной стоимости.
• enc_num_unrollings: мы устанавливаем это количество слов в исходном предложении. Мы развернем LSTM на всю длину предложения за одно вычисление. Чем выше значение enc_num_unrollings, тем лучше будет работать ваша модель. Однако это замедлит алгоритм. 
• dec_num_unrollings: устанавливается как количество слов в целевом предложении. Более высокое dec_num_unrollings также приведет к лучшей производительности, но к большим вычислительным затратам. 
• embedding_size: это размерность векторов, которые мы изучаем. Размер вложения 100-300 будет достаточен для большинства реальных задач, в которых используются векторы слов. 
Здесь мы определим гиперпараметры:
# We set the input size by loading the saved word embeddings # and getting the column size tgt_emb_mat = np.load('en-embeddings.npy') input_size = tgt_emb_mat.shape[1]
num_nodes = 128 batch_size = 10
# We unroll the full length at one go # both source and target sentences enc_num_unrollings = 40 dec_num_unrollings = 60
Если у вас большой размер пакета (на стандартном ноутбуке больше 20), вы можете столкнуться с такими проблемами, как
 	Ресурс исчерпан: OOM при выделении тензора с ... 
В этом случае вы должны уменьшить размер пакета и выполнить его повторно. код.
Далее мы определим веса и смещения для LSTM и слоя softmax. Мы будем использовать область переменных кодировщика и декодера, чтобы сделать именование переменных более интуитивным. Это стандартная ячейка LSTM, и мы не будем повторять определение веса. Затем мы определим четыре заполнителя TensorFlow для обучения: 
• enc_train_inputs: это список заполнителей enc_num_unrollings, где каждый заполнитель имеет размер [batch_size, input_size]. Это используется для подачи пакета исходного языка в кодировщик. 
• dec_train_inputs: это список заполнителей dec_num_unrollings, где каждый заполнитель имеет размер [batch_size, input_size]. Это используется для подачи соответствующего пакета предложения целевого языка. 
• dec_train_labels: это список заполнителей dec_num_unrollings, где каждый заполнитель имеет размер [batch_size, vocabulary_size]. Он содержит слова смещения dec_train_inputs, равного 1. Таким образом, два заполнителя из dec_train_inputs и dec_train_labels с одинаковым индексом в списке будут иметь i-е слово и 1-е i + слово. 
• dec_train_masks: он того же размера, что и dec_train_inputs, и маскирует любой элемент, имеющий метку </ s>, из расчета потерь. Это важно, поскольку существует много точек данных с токеном </ s>, так как они используются для заполнения предложений до фиксированной длины:
for ui in range(dec_num_unrollings):
    dec_train_inputs.append(tf.placeholder(tf.float32,
        shape=[batch_size,input_size],
        name='dec_train_inputs_%d'%ui))    dec_train_labels.append(tf.placeholder(tf.float32,        shape=[batch_size,vocabulary_size],
        name = 'dec_train_labels_%d'%ui))    dec_train_masks.append(tf.placeholder(tf.float32,
        shape=[batch_size,1],
        name='dec_train_masks_%d'%ui))
for ui in range(enc_num_unrollings):
    enc_train_inputs.append(tf.placeholder(tf.float32,
        shape=[batch_size,input_size],
        name='train_inputs_%d'%ui))

Чтобы инициализировать веса как ячеек LSTM, так и слоев softmax, мы будем использовать инициализацию Xavier, представленную Glorot и Bengio в 2010 году в их статье «Понимание сложности обучения глубоких нейронных сетей с прямой связью», Материалы 13-й Международной конференции по искусственному искусству. Разведка и статистика (2010). Это принципиальная методика инициализации, предназначенная для смягчения проблемы исчезающего градиента в очень глубоких сетях. Это доступно через инициализатор переменной tf.contrib.layers.xavier_initializer (), предоставленный в TensorFlow. В частности, при инициализации Ксавье веса j-го слоя нейронной сети инициализируются в соответствии с равномерным распределением, U [a, b], где a - минимальное значение, а b - максимальное значение:
1 1 6 6 ~, j j j j W U n n n n + +     −  + +     
Здесь nj - размер j-го слоя.
Определение сквозного расчета выходных данных 
Здесь, с определением переменных и заполнителей ввода / вывода, мы перейдем к определению выходных вычислений от кодера к декодеру и функции потерь. Для вывода мы сначала вычислим состояние ячейки LSTM и скрытое состояние для всех слов в данной партии предложений. Это достигается путем запуска цикла for, где в i-й итерации мы вводим i-й заполнитель в enc_train_inputs, а также состояние ячейки и скрытое состояние вывода из 1-й итерации. Функция enc_lstm_cell работает аналогично функции lstm_cell, которую мы видели в главе 8 «Приложения LSTM - генерация текста» и в главе 9 «Приложения LSTM - генерация подписи изображения»:
# Update the output and state of the encoder iteratively for i in enc_train_inputs:
output, state = enc_lstm_cell(i, output,state) 

Далее, мы аналогичным образом вычислим выходные данные декодера для всего целевого предложения. Однако для этого мы должны закончить вычисления, показанные в предыдущем фрагменте кода, чтобы мы могли получить v для инициализации состояний декодера. Это достигается с помощью оператора tf.control_dependencies (...). Таким образом, вложенные команды в операторе with будут выполняться только после того, как выходные данные кодера будут полностью рассчитаны:
# With the computations of the enc_lstm_cell done, 
# calculate the output and state of the decoder with tf.control_dependencies([saved_output.assign(output),                             saved_state.assign(state)]):
    # Calculate the decoder state and output iteratively
    for i in dec_train_inputs:
        output, state = dec_lstm_cell(i, output, state)
        outputs.append(output)

Затем, после расчета выходных данных декодера, мы рассчитаем логиты слоя softmax, используя скрытое состояние LSTM в качестве входных данных для слоя:
# Calculate the logits of the decoder for all unrolled steps 
logits = tf.matmul(tf.concat(axis=0, values=outputs), w) + b

Теперь, рассчитав логиты, мы можем рассчитать потери. Обратите внимание, что мы используем маску для маскировки элементов, которые не должны вносить вклад в потерю (то есть элементы </ s>, которые мы добавляем, чтобы сделать предложение фиксированной длины):
loss_batch = tf.concat(axis=0,values=dec_train_masks)*             tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=tf.concat(axis=0,                 values=dec_train_labels)) loss = tf.reduce_mean(loss_batch)

После этого, в отличие от предыдущих глав, мы будем использовать два оптимизатора: Адам и стандартный стохастический градиентный спуск. Это потому, что использование Адама в долгосрочной перспективе дало нежелательные результаты (например, внезапные большие колебания балла BLEU). Мы также используем градиентное ограничение, чтобы избежать градиентных взрывов.
# We use two optimizers: Adam and naive SGD 
# using Adam in the long run produced undesirable results 
# (e.g.) sudden fluctuations in BLEU 
# Therefore we use Adam to get a good starting point for optimizing 
# and then switch to SGD from that point onwards 
with tf.variable_scope('Adam'):
    optimizer = tf.train.AdamOptimizer(learning_rate)
 with tf.variable_scope('SGD'):    sgd_optimizer = tf.train.GradientDescentOptimizer(sgd_learning_ rate)
# Calculates gradients with clipping for Adam gradients, 
v = zip(*optimizer.compute_gradients(loss)) gradients, _ = tf.clip_by_global_norm(gradients, 5.0) optimize = optimizer.apply_gradients(zip(gradients, v))
# Calculates gradients with clipping for SGD 
sgd_gradients, v = zip(*sgd_optimizer.compute_gradients(loss)) 
sgd_gradients, _ = tf.clip_by_global_norm(sgd_gradients, 5.0) 
sgd_optimize = optimizer.apply_gradients(zip(sgd_gradients, v))

Мы будем использовать следующую инструкцию, чтобы гарантировать, что градиент правильно течет от декодера к кодеру, следя за тем, чтобы градиент существовал для всех обучаемых переменных:
for (g_i,v_i) in zip(gradients,v):
    assert g_i is not None, 'Gradient none for %s'%(v_i.name)

Обратите внимание, что запуск NMT будет намного медленнее по сравнению с предыдущими упражнениями, и на одном графическом процессоре может потребоваться более 12 часов для полной работы. 
Некоторые результаты перевода 
Это результаты, которые мы получили после 10 000 шагов:
DE:  &#124; Ferienwohnungen 1 Zi &#124; Ferienhäuser &#124; Landhäuser &#124; Autovermietung &#124; Last Minute Angebote ! !
EN (TRUE):&#124; 1 Bedroom Apts &#124; Holiday houses &#124; Rural Homes &#124; Car Rental &#124; Last Minute Offers !
EN (Predicted): Casino Tropez &#124; Club &#124; Club &#124; Aparthotels Hotels &#124; Club &#124; Last Minute Offers &#124; Last Minute Offers &#124; Last Minute Offers &#124; Last Minute Offers &#124; Last Minute Offers ! </s>
DE: Wie hilfreich finden Sie die Demo ##AT##-##AT## CD ?
EN (TRUE): How helpful do you find the demo CD ##AT##-##AT## ROM ?
EN (Predicted): How to install the new version of XLSTAT ? </s>
DE:  Das „ Ladino di Fassa " ist jedoch mehr als ein Dialekt – es ist eine richtige Sprache .
EN (TRUE):This is Ladin from Fassa which is more than a dialect : it is a language in its own right .
EN (Predicted): The <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk> <unk>
DE: In der Hotelbeschreibung im Internet müßte die Zufahrt beschrieben werden . EN (TRUE): There are no adverse comments about this hotel at all .
EN (Predicted): The <unk> <unk> is a bit of the <unk> <unk> . </s> 
Мы видим, что первое предложение распознается довольно хорошо. Однако второе предложение очень плохо переведено. Кроме того, вот результаты, полученные после 100 000 шагов:
DE: Das Hotel Opera befindet sich in der Nähe des Royal Theatre , Kongens Nytorv , &apos; Stroget &apos; und Nyhavn .
EN (TRUE): Hotel Opera is situated near The Royal Theatre , Kongens Nytorv , &quot; Strøget &quot; and fascinating Nyhavn .
EN (Predicted): Best Western Hotel <unk> <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
DE:  Alle älteren Kinder oder Erwachsene zahlen EUR 32,00 pro Übernachtung und Person für Zustellbetten .
EN (TRUE):All older children or adults are charged EUR 32.00 per night and person for extra beds .
EN (Predicted): All older children or adults are charged EUR 15 <unk> per night and person for extra beds . </s>
DE:  Im Allgemeinen basieren sie auf Datenbanken , Templates und Skripts .
EN (TRUE):In general they are based on databases , template and scripts .
EN (Predicted): The user is the most important software of the software . </s>
DE: Tux Racer wird Ihnen helfen , die Zeit totzuschlagen und sie können OpenOffice zum Arbeiten verwenden . EN (TRUE): Tux Racer will help you pass the time while you wait , and you can use OpenOffice for work .
EN (Predicted): <unk> .com we have a very friendly and helpful staff . </s>

Мы можем видеть, что, хотя переводы не идеальны, в большинстве случаев они отражают контекст исходного предложения, и наш NMT достаточно хорош для создания грамматически правильных предложений. На рисунке 10.12 показан показатель BLEU с течением времени для NMT. С течением времени наблюдается явное увеличение показателя BLEU как для обучающих, так и для тестовых наборов данных:
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Рис. 10.12. Оценка BLEU с течением времени для NMT. 
Обучение NMT совместно со встраиванием слов. 
Здесь мы обсудим, как мы можем обучить NMT совместно со встраиванием слов. В этом разделе мы рассмотрим две концепции: 
• Обучение NMT совместно со слоем встраивания слов 
• Использование предварительно обученных вложений вместо случайной инициализации слоя вложений
Доступно несколько многоязычных репозиториев для встраивания слов: 
• FastText Facebook: https://github.com/facebookresearch/fastText/ blob / master / pretrained-vectors.md 
• Многоязычные встраивания CMU: http://www.cs.cmu.edu / ~ afm / projects / multilingual_embeddings.html 
Исходя из этого, мы будем использовать встраивания CMU (~ 200 МБ), поскольку они намного меньше по сравнению с fastText (~ 5 ГБ). Сначала нам нужно загрузить немецкие (multilingual_embeddings.de) и английские (multilingual_embeddings.en) вложения. Это доступно в качестве упражнения в nmt_with_pretrained_wordvecs. ipynb в папке ch10. 
Максимизация совпадений между словарем набора данных и предварительно подготовленными вложениями 
Сначала нам нужно получить подмножество предварительно подготовленных вложений слов, которые имеют отношение к проблеме, которую мы хотим решить. Это важно, так как словарь встраиваемых слов может быть большим и содержать много слов, которых нет в словаре набора данных. Предварительно обученные вложения слов представляют собой набор строк, где строка - это слово, а вектор слова - через пробел. Пример строки из предварительно обученных вложений может выглядеть так:
door 0.283259492301 0.198089365764 0.335635845187 -0.385702777914 0.491404970211… 
Один очевидный и наивный способ достижения этой цели - пробежаться по словарю предварительно подготовленного набора данных за строкой, и, если слово в текущей строке совпадает с любым словом в словаре набора данных, мы сохраним его, предполагая, что слово будет использоваться в будущем. Однако это будет крайне неэффективно, так как обычно словарный запас имеет тенденцию быть смещенным к различным проектным решениям, принятым создателем. Например, некоторые могут считать слова cat's, cat и Cat одним и тем же словом, тогда как другие могут считать их отдельными словами. Если мы наивно сопоставим словарь для встраивания предварительно подготовленных слов и словарь набора данных, мы можем пропустить много слов. Поэтому, будем ли мы использовать следующую логику, чтобы убедиться, что мы извлечем максимум из предварительно обученных векторов слов. Сначала мы определим два массива NumPy для хранения соответствующих вложений слов как для исходного, так и для целевого языков:
de_embeddings = np.random.uniform(size=(vocabulary_size, embeddings_ size),
low=-1.0, high=1.0) 
en_embeddings = np.random.uniform(size=(vocabulary_size, embeddings_ size),
low=-1.0, high=1.0)
Затем мы откроем текстовый файл, содержащий векторы слов, как показано здесь. Параметр имени файла - multilingual_embeddings.de для немецкого языка и miltilingual_ embeddings.en для английского:
with open(filename,'r',encoding='utf-8') as f:
Далее мы разделим слово и вектор слова, разделив строку пробелами:
line_tokens = line.split(' ')
        lword = line_tokens[0]
        vector = [float(v) for v in line_tokens[1:]]

Мы также будем игнорировать, если слово пустое (то есть содержит только пробелы, символы табуляции или символы новой строки):
if len(lword.strip())==0:
            continue

Мы также уберем любые акценты, присутствующие в словах (особенно в немецких словах), чтобы убедиться, что у нас будет больше всего шансов на совпадение:
lword = unidecode.unidecode(lword)
После этого мы будем использовать следующую логику для проверки совпадений. Мы напишем набор каскадных условий для проверки совпадений как для исходного, так и для целевого языков: 
1. Сначала проверим, находится ли слово из предварительно обученных вложений (lword) в словаре набора данных как есть. 
2. Если нет, проверьте, первая буква заглавная (то есть cat становится Cat), если она найдена в словаре набора данных 
3. Если нет, проверьте, похоже ли слово из предварительно подготовленных вложений (lword) на любое из результатов слова, удалив специальные символы (например, акценты) из словарного запаса слов набора данных. 
Если одно из этих условий выполнено, мы получим этот вектор встраивания слова и назначим его в строку, индексированную по идентификатору этого слова (word → ID), отображение сохраняется в src_dictionary и tgt_dictionary для два языка. Мы сделаем это для обоих языков:
# Update the randomly initialized
            # matrix for the embeddings
            # Update the number of words
            # matched with pretrained embeddings
            try:
dword = dictionary[lword]                words_found_ids.append(dictionary[lword])
embeddings[dictionary[lword],:] = vector
words_found += 1
# If a given word is not found in our vocabulary,
except KeyError:
try:
   # First try  to match the same
   # with first letter capitalized
   # capitalized
   if len(lword)>0:
       firt_letter_cap = lword[0].upper()+lword[1:]
                           else:
                               continue
                          # Update the word embeddings matrix
                          dword = dictionary[firt_letter_cap]                    words_found_ids.append(dictionary[firt_letter_cap])
embeddings[dictionary[firt_letter_cap],:] = vector                    words_found += 1
except KeyError:
# If not found try to match the word with
# the unaccented word
try:
dword = unaccented_dict[lword]                        words_found_ids.append(dictionary[lword])                        embeddings[dictionary[lword],:] = vector                        words_found += 1
                                   except KeyError:
                        continue

Определение слоя внедрения в качестве переменной TensorFlow 
Мы определим две обучаемые переменные TensorFlow для слоев внедрения (то есть tgt_word_embeddings и src_word_embeddings) следующим образом:
tgt_word_embeddings = tf.get_variable( 'target_embeddings',shape=[vocabulary_size,        embeddings_size],
    dtype=tf.float32, initializer = tf.constant_initializer(en_embeddings) ) src_word_embeddings = tf.get_variable('source_embeddings',shape=[vocabulary_size,        embeddings_size],
     dtype=tf.float32, initializer = tf.constant_initializer(de_embeddings) )

Затем мы сначала изменим размерность заполнителей в dec_train_ input и enc_train_inputs на [batch_size], а тип данных на tf.int32. Это сделано для того, чтобы мы могли использовать их для выполнения поиска вложений (tf. Nn.embedding_lookup (...)) для каждого развернутого ввода следующим образом:
# Defining unrolled training inputs as well as embedding lookup (Encoder) 
for ui in range(enc_num_unrollings):
    enc_train_inputs.append(tf.placeholder(tf.int32, shape=[batch_size],           name='train_inputs_%d'%ui))    enc_train_input_embeds.append(tf.nn.embedding_lookup(                                  src_word_embeddings,
enc_train_inputs[ui]))
# Defining unrolled training inputs, embeddings, 
# outputs, and masks (Decoder) 
for ui in range(dec_num_unrollings):
     dec_train_inputs.append(tf. placeholder(tf.int32, shape=[batch_size],                            name='dec_train_inputs_%d'%ui))    dec_train_input_embeds.append(tf.nn.embedding_lookup(tgt_word_embeddings,                                  dec_train_inputs[ui]))
    dec_train_labels.append(tf.placeholder(tf.float32,                            shape=[batch_size,vocabulary_size], name = 'dec_train_labels_%d'%ui))    dec_train_masks.append(tf.placeholder(tf.float32, shape=[batch_size,1],                           name='dec_train_masks_%d'%ui))

Затем вычисления ячеек LSTM для кодера и декодера изменяются, как показано здесь. В этой части мы сначала вычисляем выходной сигнал ячейки LSTM кодера с входными данными исходного предложения. Затем, используя информацию о конечном состоянии от кодера в качестве состояния инициализации для декодера (то есть используя tf.control_ dependencies (...)), мы вычисляем выходные данные декодеров, а также логиты и предсказания softmax:
# Обновлять выходные данные и состояние кодера итеративно для i в enc_train_inputs: output, state = enc_lstm_cell (i, output, state)
print ('Расчет выходных данных декодера') 
# После выполнения вычислений 
enc_lstm_cell 
# вычислить выходные данные и состояние декодера с помощью tf.control_dependencies ([сохраненный_output.assign (выходной), сохраненный_стейт.assign (состояние)]): 
# вычислить состояние декодера и вывод итеративно для i в 
dec_train_inputs: output, state = dec_lstm_cell (i, output, state) output.append (output) 

Обратите внимание, что файл упражнения имеет несколько иной расчет вывода, чем показано здесь. Вместо того, чтобы вводить предыдущее предсказание в качестве ввода, мы вводим истинное слово в качестве ввода. Это имеет тенденцию обеспечивать лучшую производительность, чем кормление в предыдущем прогнозе, и будет подробно обсуждаться в следующем разделе. Однако общая идея остается прежней. Последние шаги включают вычисление потерь для декодера и определение оптимизатора для оптимизации параметров модели, как мы видели ранее.
Наконец, мы опишем вычислительный граф для реализации нашего NMT. Здесь мы визуализируем вычислительный граф для нашей модели.
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Рисунок: 10.13: Вычислительный график системы NMT с предтренированными вложениями 
Улучшение NMT 
Как вы можете видеть из предыдущих результатов, наша модель перевода не работает идеально. Эти результаты были получены при выполнении оптимизации более 12 часов на одном графическом процессоре NVIDIA 1080 Ti. Также обратите внимание, что это даже не полный набор данных, мы использовали только 250 000 пар предложений для обучения. Однако, если вы что-то вводите в Google Translate, который использует систему Google Neural Machine Translation (GNMT), перевод почти всегда выглядит очень реалистично с небольшими ошибками. Поэтому важно знать, как мы можем улучшить модель, чтобы она могла давать лучшие результаты. В этом разделе мы обсудим несколько способов улучшения NMT, таких как принуждение учителей, глубокие LSTM и механизм внимания. 
Принудительное принуждение 
Как мы обсуждали в разделе «Обучение NMT», для обучения NMT мы делаем следующее: 
• Сначала мы подали полное предложение кодера, чтобы получить выходные данные конечного состояния кодера 
• Затем мы устанавливаем конечные состояния кодера на быть начальным состоянием декодера 
• Мы также попросили декодер предсказать полное целевое предложение без какой-либо дополнительной информации, за исключением последнего вывода состояния кодера
Это может быть слишком сложной задачей для модели. Мы можем понять это явление следующим образом. Скажем, учитель просит ученика детского сада закончить следующее предложение, учитывая только первое слово: 
I ___ ____ ___ ___ ____ ____ 
Это означает, что ребенок должен выбрать предмет; глагол; и объект, знать синтаксис языка, понимать грамматические правила языка и так далее. Следовательно, склонность ребенка к неправильному предложению высока. Тем не менее, если мы попросим ребенка написать это слово в слово, они могут лучше подготовить предложение. Другими словами, мы просим ребенка дать следующее слово, учитывая следующее: 
I ____ 
Затем мы просим их заполнить данный пробел: 
мне нравится ____ 
И продолжать в том же духе: 
мне нравится ___,
мне нравится летать ____, 
Я люблю летать воздушными змеями ____ 
Таким образом, ребенок может лучше выполнять правильное и содержательное предложение. Это явление известно как принуждение учителя. Мы можем принять тот же подход, чтобы уменьшить сложность задачи перевода, как показано на рисунке 10.13:
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Рисунок 10.14: Механизм принуждения учителя. Более темные стрелки на входах изображают недавно введенные входные соединения с декодером. На рисунке справа показано, как изменяется ячейка LSTM декодера.
Как показано жирным шрифтом на рисунке, входные данные для декодера были заменены фактическими целевыми словами в обучающих данных. Поэтому NMT-декодер больше не должен нести бремя прогнозирования целевого предложения с учетом исходного предложения. Скорее, декодер должен только правильно предсказать текущее слово, учитывая предыдущее слово. Стоит отметить, что в предыдущей дискуссии мы обсуждали процедуру обучения без каких-либо подробностей о принуждении учителей. Тем не менее, мы фактически используем учительское принуждение во всех упражнениях этой главы. 
Глубокие LSTM 
Одним очевидным улучшением, которое мы можем сделать, является увеличение количества слоев путем размещения LSTM друг над другом, создавая тем самым глубокий LSTM (см. Рисунок 10.14). Например, система Google NMT использует восемь слоев LSTM, наложенных друг на друга (система машинного перевода Google: преодоление разрыва между человеком и машинным переводом, Wu и другие, Технический отчет (2016)). Хотя это затрудняет вычислительную эффективность, наличие большего количества слоев значительно улучшает способность нейронной сети изучать синтаксис и другие лингвистические характеристики двух языков.
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Рисунок 10.15: Иллюстрация глубокого LSTM
Внимание (Attention)
Внимание (Attention) является одним из ключевых достижений в машинном переводе, который привел к созданию более эффективных систем NMT. Внимание позволяет декодеру получать доступ к полной истории состояний кодера, что приводит к созданию более богатого представления исходного предложения во время перевода. Прежде чем углубляться в детали механизма внимания, давайте разберемся с одним из критических узких мест в нашей нынешней системе NMT и преимуществами внимания при его работе. Устранение узкого места вектора контекста как вы, наверное, уже догадались, является вектор контекста, или вектор мысли, который находится между кодером и декодером (см. Рисунок 10.15):
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Рисунок 10.16: Архитектура кодер-декодер
Чтобы понять, почему это узкое место, давайте представим, что переводим следующее английское предложение: 
Я пошел на цветочный рынок, чтобы купить цветы. 
Это переводится к следующему: 
Ich ging zum Blumenmarkt, гм Blumen zu kaufen 
Если мы хотим сжать это в фиксированный вектор длины, результирующий вектор должен содержать следующие данные: 
• Информация о предмете (I) 
• Информация о глаголах (купить и уйти) 
• Информация об объектах (цветы и цветочный рынок) 
• Взаимодействие предметов, глаголов и объектов друг с другом в предложении
Обычно контекстный вектор имеет размер 128 или 256 элементов. Это очень непрактичное и чрезвычайно сложное требование для системы. Поэтому в большинстве случаев контекстный вектор не может предоставить полную информацию, необходимую для хорошего перевода. Это приводит к неэффективному декодеру, который субоптимально переводит предложение. Кроме того, во время декодирования вектор контекста наблюдается только в начале. После этого декодер LSTM должен запоминать контекстный вектор до конца трансляции. Хотя LSTM хороши для долговременного запоминания, практически они ограничены. Это сильно повлияет на результаты, особенно для длинных предложений. Вот где внимание пригодится. Благодаря механизму внимания, декодер будет иметь доступ к полной истории состояний кодера для каждого временного шага декодирования. Это позволяет декодеру иметь доступ к очень богатому представлению исходного предложения. Кроме того, механизм внимания представляет слой softmax, который позволяет декодеру вычислять средневзвешенное значение последних наблюдаемых состояний кодера, которое будет использоваться в качестве вектора контекста для декодера. Это позволяет декодеру уделять разное количество внимания разным словам на разных этапах декодирования. 
Подробно о механизме внимания 
Теперь давайте подробно рассмотрим фактическую реализацию механизма внимания. Мы будем использовать механизм внимания, подробно описанный в статье «Нейронный машинный перевод путем обучения совместному выравниванию и переводу», Bahdanau, Cho и Bengio, arXiv: 1409.0473 (2014). Для согласованности с бумагой мы будем использовать следующие обозначения: 
• скрытое состояние кодировщика: hi 
• слова целевого предложения: yi 
• скрытое состояние декодера: si 
• вектор контекста: ci 
До сих пор наш декодер LSTM состоял из ввода yi и скрытое состояние 1 is−. 
Мы будем игнорировать состояние ячейки, поскольку это внутренняя часть LSTM. Это можно представить следующим образом:
() 1, де
Здесь f представляет действительные правила обновления, используемые для вычисления yi + 1 и si. С помощью механизма внимания мы вводим новый зависящий от времени вектор контекста ci для i-го этапа декодирования. Вектор ci представляет собой взвешенное среднее значение скрытых состояний всех развернутых шагов кодера. Более высокий вес будет придан j-му скрытому состоянию кодера, если j-е слово более важно для перевода i-го слова на целевой язык. Теперь декодер LSTM становится таким:
() 1,, de c i iLSTM f y s c - =
Концептуально механизм внимания можно представить как отдельный уровень и проиллюстрировать его как на рисунке 10.16. Как показано, внимание функционирует как слой. Уровень внимания отвечает за создание ci для i-го временного шага процесса декодирования:
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Рисунок 10.17: Концептуальный механизм внимания в NMT
Давайте теперь посмотрим, как рассчитать ci:
L i ij j j c h α = = ∑
Здесь L - количество слов в исходном предложении, а ij - нормализованный вес, представляющий важность скрытого состояния j-го кодера для вычисления предсказания i-го декодера. Это рассчитывается с использованием слоя softmax. L - длина предложения кодера: 
() () 1 ij ij L ikk exp e exp e α = = ∑
Здесь ij e - это энергия или важность, измеряющая, насколько j-е скрытое состояние кодера и предыдущее состояние 1 декодера - вносит вклад в вычисление si:
 	() 1 T ij a a i a j e v tanh W s U h - = +
По сути это означает, что eij рассчитывается с помощью многослойного персептрона, вес которого равен va, Wa и Ua, а 1 is - и hj - входы в сеть. Механизм внимания показан на рисунке 10.17:
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Рисунок 10.18: Механизм внимания
Реализация механизма внимания 
Здесь мы обсудим, как мы можем реализовать механизм внимания. Два основных изменения, через которые будет проходить система: 
• Будет введено больше параметров (то есть весов) (для вычисления внимания и использования внимания в качестве входных данных для ячейки LSTM декодера) 
• Новая функция для вычислений, связанных с вниманием, будет введено (то есть attn_layer) 
• Изменения в вычислениях ячейки LSTM декодера, чтобы принять взвешенную сумму всех выходных данных ячейки LSTM кодера в качестве входных данных. 
Мы будем обсуждать только добавленные дополнительные элементы по сравнению со стандартной моделью NMT. Вы можете найти полное упражнение для NMT с вниманием в neural_machine_translation_attention.ipynb. 
Определение весов 
Для реализации механизма внимания будут представлены три новых набора весов. Все эти веса используются для вычисления энергетического члена (то есть, т.е.), который мы обсуждали ранее:
W_a = tf.Variable(tf.truncated_normal([num_nodes,num_nodes],        stddev=0.05),name='W_a')
    U_a = tf.Variable(tf.truncated_normal([num_nodes,num_nodes],        stddev=0.05),name='U_a')
    v_a = tf.Variable(tf.truncated_normal([num_nodes,1],
        stddev=0.05),name='v_a')

Кроме того, мы определим новый набор весов, который будет использоваться для получения ci в качестве входных данных для i-го этапа развертывания декодера:
dec_ic = tf.get_variable('ic',shape=[num_nodes, num_nodes],        initializer = tf.contrib.layers.xavier_initializer())    dec_fc = tf.get_variable('fc',shape=[num_nodes, num_nodes],        initializer = tf.contrib.layers.xavier_initializer())    dec_cc = tf.get_variable('cc',shape=[num_nodes, num_nodes],        initializer = tf.contrib.layers.xavier_initializer())    dec_oc = tf.get_variable('oc',shape=[num_nodes, num_nodes],        initializer = tf.contrib.layers.xavier_initializer())

Вычисление внимания 
Для вычисления значений внимания для каждой позиции кодера и декодера мы определим функцию, которая делает это для нас, attn_layer (...). Этот метод вычисляет внимание для всех позиций (то есть, num_enc_unrollings) кодера для одного этапа развертывания декодера. Метод attn_layer (...) получает два аргумента функции в качестве параметров:
attn_layer (h_j_unrolled, s_i_minus_1) 
Параметры следующие: 
• h_i_unrolled: это выходные данные ячейки LSTM кодировщика num_enc_unrolling, которые мы вычислили во время подачи исходного предложения в кодировщик. Это будет список тензоров num_enc_unrolling, где каждый тензор имеет размер [batch_size, num_nodes]. 
• s_i_minus_1: вывод ячейки LSTM предыдущего декодера. Это будет тензор размера [batch_size, num_nodes]. 
Сначала мы создадим один тензор со списком развернутых выходов кодировщика размером [num_enc_unrollings * batch_size, num_nodes]:
    enc_logits = tf.concat (axis = 0, values ​​= h_j_unrolled) 
Затем мы вычислим 1 ai W s– с помощью следующей операции: 
# размера [enc_num_unroll x batch_size, num_nodes] w_a_mul_s_i_minus_1 = tf.matmul (enc_outputs, W_a) рассчитаем aj U h:
    # размера [enc_num_unroll x batch_size, num_nodes] u_a_mul_h_j = tf.matmul (tf.tile (s_i_minus_1, [enc_num_ unrollings, 1]), U_a) 
Теперь мы будем вычислять энергию как () 1 T ij aaiajev tanh W s S = + Это тензор размера [enc_num_unroll * batch_size, 1]:
    e_j = tf.matmul (tf.nn.tanh (w_a_mul_s_i_minus_1 + u_a_mul_h_j), v_a)

Теперь мы можем сначала разбить большой e_j на длинный список тензоров enc_num_unrolling с помощью tf.split (...), где каждый тензор имеет размер [batch_size, 1]. После этого мы объединяем этот список вдоль оси 1, чтобы получить тензор размера [batch_size, enc_num_unrollings] (то есть reshaped_e_j). Следовательно, одна строка reshaped_e_j будет соответствовать значениям внимания для всех позиций развернутых временных шагов кодера:
# list of enc_num_unroll elements, each
# element [batch_size, 1]
    batched_e_j = tf.split(axis=0,
        num_or_size_splits=enc_num_unrollings,value=e_j)
 # of size [batch_size, enc_num_unroll]
    reshaped_e_j = tf.concat(axis=1,values=batched_e_j)

Теперь мы можем легко вычислить нормализованные значения внимания для reshaped_e_j. Значения будут нормализованы по развернутым временным шагам (ось 1 reshaped_e_j):
    	 # размера [batch_size, enc_num_unroll] alpha_i = tf.nn.softmax (reshaped_e_j) 
Затем следует разбить alpha_i на список тензоров enc_num_unroll, каждый из которых имеет размер [batch_size, 1]:
    	 alpha_i_list = tf.unstack (alpha_i, axis = 1) 
После этого мы вычислим взвешенную сумму каждого из выходов кодера (то есть h_j_unrolled) и назначим ее для c_i, которая будет использоваться в качестве входных данных для i-го временного шага развертки, декодера ячейки LSTM:
c_i_list = [tf.reshape (alpha_i_list [e_i], 
[-1,1]) * h_j_unrolled [e_i] for e_i in range(enc_num_ unrollings)] c_i = tf.add_n (c_i_list) # размера [batch_size, num_nodes] 

Тогда чтобы принять c_i в качестве входных данных для i-го этапа развертывания ячейки LSTM декодера, вычисление ячейки LSTM декодера изменяется следующим образом:
# Definition of the cell computation (Decoder) def dec_lstm_cell(i, o, state, c):    """Create a LSTM cell"""    input_gate = tf.sigmoid(tf.matmul(i, dec_ix) + tf.matmul(o, dec_ im) + tf.matmul(c, dec_ic) + dec_ib)
    forget_gate = tf.sigmoid(tf.matmul(i, dec_fx) + tf.matmul(o, dec_ fm) + tf.matmul(c, dec_fc) + dec_fb)
    update = tf.matmul(i, dec_cx) + tf.matmul(o, dec_cm) + tf.matmul(c, dec_cc) +dec_cb     state = forget_gate * state + input_gate * tf.tanh(update)
    output_gate = tf.sigmoid(tf.matmul(i, dec_ox) + tf.matmul(o, dec_ om) +                  tf.matmul(o, dec_oc) + dec_ob)    return output_gate * tf.tanh(state), state

Some translation results – NMT with attention 
Here are the results we obtained after 10,000 steps:
DE:  &#124; Ferienwohnungen 1 Zi &#124; Ferienhäuser &#124; Landhäuser &#124; Autovermietung &#124; Last Minute Angebote ! !
EN (TRUE):&#124; 1 Bedroom Apts &#124; Holiday houses &#124; Rural Homes &#124; Car Rental &#124; Last Minute Offers !
EN (Predicted): &#124; Apartments &#124; Hostels &#124; Hostels &#124; Last Minute Offers ! </s>
DE: Wie hilfreich finden Sie die Demo ##AT##-##AT## CD ?
EN (TRUE): How helpful do you find the demo CD ##AT##-##AT## ROM ?
EN (Predicted): How can you find the XLSTAT ##AT##-##AT## MX ? </s>
DE:  Das „ Ladino di Fassa " ist jedoch mehr als ein Dialekt – es ist eine richtige Sprache .
EN (TRUE):This is Ladin from Fassa which is more than a dialect : it is a language in its own right .
EN (Predicted): The <unk> &quot; is a very important role in the world . </s>
DE: In der Hotelbeschreibung im Internet müßte die Zufahrt beschrieben werden .
EN (TRUE): There are no adverse comments about this hotel at all .
EN (Predicted): The <unk> <unk> is the <unk> of the Internet . </s>
Подобно тому, что мы наблюдали ранее, NMT с вниманием хорошо переводит некоторые предложения, но плохо переводит другие.
Кроме того, это результаты, полученные после 100 000 шагов:
DE: Das Hotel Opera befindet sich in der Nähe des Royal Theatre , Kongens Nytorv , &apos; Stroget &apos; und Nyhavn .
EN (TRUE): Hotel Opera is situated near The Royal Theatre , Kongens Nytorv , &quot; Strøget &quot; and fascinating Nyhavn .
EN (Predicted): Best Western Hotel <unk> <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> ,
DE:  Alle älteren Kinder oder Erwachsene zahlen EUR 32,00 pro Übernachtung und Person für Zustellbetten .
EN (TRUE):All older children or adults are charged EUR 32.00 per night and person for extra beds .
EN (Predicted): All older children or adults are charged EUR 15 <unk> per night and person for extra beds . </s>
DE:  Im Allgemeinen basieren sie auf Datenbanken , Templates und Skripts .
EN (TRUE):In general they are based on databases , template and scripts .
EN (Predicted): The user is the most important software of the software . </s>
DE: Tux Racer wird Ihnen helfen , die Zeit totzuschlagen und sie können OpenOffice zum Arbeiten verwenden .
EN (TRUE): Tux Racer will help you pass the time while you wait , and you can use OpenOffice for work .
EN (Predicted): <unk> .com we have a very friendly and helpful staff . </s>
Мы использовали тот же набор тестовых предложений, который мы использовали для оценки стандартного NMT для более простого сравнения. Мы можем видеть, что модель NMT с вниманием обеспечивает намного лучшие трансляции по сравнению со стандартным NMT. Но все же есть вероятность ошибочных переводов, поскольку мы используем ограниченный объем данных.
Рисунок 10.18 изображает показатель BLEU с течением времени для NMT и NMT с вниманием, бок о бок. Мы ясно видим, что NMT с вниманием дает лучший показатель BLEU как в данных обучения, так и в тестах:
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Рисунок 10.19: Оценка BLEU во времени для NMT и NMT + Внимание
Согласно результатам 2017 года, текущее состояние BLEU для перевода с немецкого на английский составляет 35,1 (Университет Эдинбурга Neural MT Systems для WMT17, автор Rico Sennrich и др. Препринт arXiv arXiv: 1708.00726 (2017))
Визуализация внимания для исходных и целевых предложений 
На рисунке 10.19 мы можем визуализировать, как значения внимания выглядят для разных исходных слов для заданного целевого слова для нескольких пар исходного и целевого перевода. Если вы помните, при вычислении внимания у нас были значения внимания enc_num_unrollings для данной позиции декодера. Следовательно, если вы объединяете все векторы внимания для всех позиций в декодере, вы можете создать матрицу внимания.
В матрице внимания у нас есть целевые слова в виде строк и исходные слова в виде столбцов. Более высокое (более светлое) значение для некоторых строк и столбцов указывает на то, что при прогнозировании целевого слова, найденного в этой строке, декодер в основном обращал внимание на исходное слово, заданное столбцом. Например, вы можете видеть, что Hotel в целевом предложении сильно коррелирует с Hotel в исходном предложении:
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Рисунок 10.20: Матрицы внимания для нескольких различных пар перевода источника-цели
Это подводит нас к концу нашей дискуссии о NMT. Мы обсудили базовую архитектуру кодер-декодер, используемую в NMT, а также обсудили, как оценивать системы NMT. Затем мы обсудили несколько способов улучшения систем NMT, таких как принуждение учителей, использование глубоких LSTM и механизм внимания. Важно понимать, что NMT имеет широкий спектр вариантов использования в реальном мире. Одним из очевидных вариантов использования является международный бизнес, имеющий филиалы во многих странах. В таких компаниях сотрудники из разных стран должны иметь более быстрые способы общения, не делая языковой барьер. Поэтому автоматический перевод электронной почты с одного языка на другой может быть очень полезным для такой компании. Далее, на производстве MT можно использовать для создания многоязычных описаний продуктов / руководств пользователя. Затем эксперты могут выполнить легкую постобработку, чтобы убедиться в точности переводов. Наконец, MT может пригодиться для повседневных задач, таких как многоязычные переводы. Скажем, пользователь не является носителем английского языка и должен искать что-то, что он не знает, как полностью описать на английском языке. В этом случае пользователь может написать многоязычный поисковый запрос. Затем система MT может перевести запрос на разные языки и поисковые ресурсы в Интернете, которые соответствуют поисковому запросу пользователя. 
Другие приложения моделей Seq2Seq - чат-боты 
Еще одно популярное приложение последовательности к моделям последовательностей - создание чат-ботов. Чатбот - это компьютерная программа, способная вести реалистичный разговор с человеком. Такие приложения очень полезны для компаний с огромной клиентской базой. Отвечая на вопросы клиентов, задавая основные вопросы, ответы на которые очевидны, приходится значительная часть запросов в службу поддержки. Чатбот может обслуживать клиентов с основными проблемами, когда он может найти ответ. Кроме того, если чат-бот не может ответить на вопрос, запрос перенаправляется оператору-человеку. Чат-боты могут сэкономить много времени, которое операторы-люди проводят, отвечая на основные вопросы, и позволить им выполнять более сложные задачи.
Обучение чат-бота 
Итак, как мы можем использовать модель последовательности к последовательности для обучения чат-бота? Ответ довольно прост, поскольку мы уже узнали о модели машинного перевода. Единственная разница будет в том, как формируются пары исходного и целевого предложений. В системе NMT пары предложений состоят из исходного предложения и соответствующего перевода на целевом языке для этого предложения. Однако при обучении чат-бота данные извлекаются из диалога между двумя людьми. Исходными предложениями будут предложения / фразы, произнесенные человеком А, а целевыми предложениями будут ответы на человека А, сделанные человеком В. Вот пример этого. Эти данные состоят из диалогов фильмов между людьми и находятся по адресу https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_ Corpus.html. 
БИАНКА: Нет! 
КАМЕРОН: Они делают, чтобы! 
БИАНКА: Я надеюсь на это. 
КАМЕРОН: Она в порядке? 
БИАНКА: Пошли. 
КАМЕРОН: Вау, 
БИАНКА: Хорошо, тебе нужно научиться лгать. 
КАМЕРОН: Нет, 
БИАНКА: Я шучу. Вы знаете, как иногда вы просто становитесь этой "персоной"? И вы не знаете, как выйти? 
БИАНКА: Как и мой страх носить пастель? 
КАМЕРОН: «Настоящий ты».

Вот ссылки на несколько других наборов данных для обучения диалоговых чат-ботов: 
• Набор данных комментариев Reddit: https://www.reddit.com/r/datasets/ comments / 3bxlg7 / i_have_every_publicly_available_reddit_comment / 
• Набор данных диалога Maluuba: https: //luata. ru / Frames 
• Корпус диалогов Ubuntu: http://dataset.cs.mcgill.ca/ubuntucorpus-1.0/ 
• Задача диалоговой разведки NIPS: http://convai.io/ 
• Корпорация Майкрософт по исследованию текста в социальных сетях: https: // tinyurl.com/ y7ha9rc5 
На рисунке 10.20 показано сходство системы чат-бота с системой NMT. Например, мы тренируем чат-бота с набором данных, состоящим из диалогов между двумя людьми. Кодировщик принимает предложения / фразы, произнесенные одним человеком, где декодер обучен предсказывать ответ другого человека. После обучения таким образом, мы можем использовать чат-бота, чтобы дать ответ на заданный вопрос:
[image: ]
Рисунок 10.21: Иллюстрация чат-бота 
Оценка чат-ботов - тест Тьюринга 
Тест Тьюринга был изобретен Аланом Тьюрингом в 1950-х годах как способ измерения интеллекта машины. Настройки эксперимента хорошо подходят для оценки чат-ботов. Эксперимент настроен следующим образом.
Участвуют три стороны: оценщик (то есть человек) (A), другой человек (B) и машина (C). Трое из них сидят в трех разных комнатах, так что никто из них не может видеть другого. Единственным средством связи является текст, который печатается на компьютере одной стороной, и получатель видит текст на компьютере на их стороне. Оценщик общается как с человеком, так и с машиной. И в конце разговора оценщик должен отличить машину от человека. Если оценщик не может провести различие, говорят, что машина прошла тест Тьюринга. Эта настройка показана на рисунке 10.21:
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Рисунок 10.22: Тест Тьюринга



Резюме
В этой главе мы подробно поговорили о системах NMT. Машинный перевод - это задача перевода данного текстового корпуса с исходного языка на целевой. Сначала мы кратко поговорили об истории машинного перевода, чтобы сформировать чувство признательности за то, что вошло в машинный перевод, чтобы стать тем, чем оно является сегодня. Мы увидели, что сегодня самые эффективные системы машинного перевода - это системы NMT. Затем мы поговорили о фундаментальной концепции этих систем и разложили модель на уровень внедрения, кодер, вектор контекста и декодер. Сначала мы установили преимущество наличия слоя встраивания, поскольку он дает семантическое представление слов по сравнению с векторами с горячим кодированием. Затем мы поняли цель кодера, которая заключается в том, чтобы выучить хороший фиксированный размерный вектор, который представляет исходное предложение. Затем, когда был изучен вектор фиксированного размерного контекста, мы использовали его для инициализации декодера. Декодер отвечает за фактический перевод исходного предложения. Затем мы обсудили, как обучение и логический вывод работают в системах NMT.
Затем мы рассмотрели фактическую реализацию системы NMT, которая переводит предложения с немецкого на английский, чтобы понять внутренние механизмы системы NMT. Здесь мы рассмотрели систему NMT, реализованную с использованием основных операций TensorFlow, поскольку это дает нам глубокое понимание пошагового выполнения системы по сравнению с использованием готовых библиотек, таких как seq2seq в TensorFlow. Затем мы узнали, что контекстный вектор вызывает узкое место в системе, поскольку система вынуждена встраивать все знания в исходном предложении в фиксированный размерный (сравнительно небольшой) вектор. Из-за сложности задачи, которую система не выполняет, мы перешли к изучению техники, позволяющей избежать этого узкого места: механизма внимания. Вместо того чтобы зависеть исключительно от вектора фиксированной размерности для изучения переводов, механизм внимания позволяет декодеру наблюдать полную историю состояний кодера на каждом этапе декодирования, позволяя декодеру формировать вектор с расширенным контекстом. Мы видели, что этот метод позволяет системам NMT работать намного лучше. Наконец, мы говорили о другом популярном приложении последовательного обучения: чат-боты. Чат-боты - это приложения машинного обучения, которые способны вести реалистичную беседу с человеком и даже отвечать на вопросы. Мы видели, что системы NMT и чат-роботы работают одинаково, и разница заключается только в данных обучения. Мы также обсудили тест Тьюринга, который является качественным тестом, который можно использовать для оценки чат-ботов. В следующей главе мы обсудим различные будущие тенденции в NLP.
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